Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites

نویسندگان

  • Reto Haggenmueller
  • Fangming Du
  • John E. Fischer
  • Karen I. Winey
چکیده

An interfacial polymerization method for nylon 6,6 was adapted to produce nanocomposites with single wall carbon nanotubes (SWNT) via in situ polymerization. SWNT were incorporated in purified, functionalized or surfactant stabilized forms. The functionalization of SWNT was characterized by FTIR, Raman spectroscopy and TGA and the SWNT dispersion was characterized by optical microscopy before and after the in situ polymerization. SWNT functionalization and surfactant stabilization improved the nanotube dispersion in solvents but only functionalized SWNT showed a good dispersion in composites, whereas purified and surfactant stabilized SWNT resulted in poor dispersion and nanotube agglomeration. Weak shear flow induced SWNT flocculation in these nanocomposites. The electrical and mechanical properties of the SWNT/nylon nanocomposites are briefly discussed in terms of SWNT loading, dispersion, length and type of functionalization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers

Multiwalled carbon nanotube/nylon-6 nanocomposites (MWNT/nylon-6) were prepared by in situ polymerization, whereby functionalized MWNTs (F-MWNTs) and pristine MWNTs (P-MWNTs) were used as reinforcing materials. The F-MWNTs were functionalized by Friedel-Crafts acylation, which introduced aromatic amine (COC(6)H(4)-NH(2)) groups onto the side wall. Scanning electron microscopy (SEM) images obtai...

متن کامل

Nanoparficks of Silver loaded on polyanilino and Nylon

Polyaniline and polyamide (nylon 6,6) nanocomposites with Silva were prepared by in-situ oxidativepolymerization of aniline monomers in the presence of Ag salt Nano particles of silver (NPs) were symthesieedby controlled reduction of Ag+ ions kith sodium borohydride at room temperature. Nylon 6,6 wax loaded withAg nanoparfieles by erdrapment of Ag+ ions into the polymer network, followed by red...

متن کامل

Increasing the hydrogen storage capacity of single-walled carbon nanotube (SWNT) through facile impregnation by TiO2, ZrO2 and ZnO nanocatalysts

Various nanocomposites of TiO2, ZnO and ZrO2 decorated single wall Carbon nanotubes (SWNTs) were fabricated by facile and template free continuous ultrasonication/stirring of virgin metal oxide nanopowders and SWNTs in ethanol under UV-light illumination. The TEM micrographs showed that nanoparticles (NPs) were uniformly dispersed and bonded on the surface of SWNTs. The results of XRD as well a...

متن کامل

Interfacial load transfer in polymer/carbon nanotube nanocomposites with a nanohybrid shish kebab modification.

Interfacial properties are known to have a critical effect on the mechanical properties of a nanocomposite material system. Here, the interfacial load transfer in a carbon nanotube (CNT)/nylon-11 composite was studied with a CNT/nylon-11 nanohybrid shish kebab (NHSK) structure modification using Raman spectroscopy. Characterization of the polymer crystal in the NHSK using differential scanning ...

متن کامل

Supported coordination polymerization: a unique way to potent polyolefin carbon nanotube nanocomposites.

Homogeneous surface coating of long carbon nanotubes is achieved by in situ polymerization of ethylene as catalyzed directly from the nanotube surface-treated by a highly active metallocene-based complex and allows for the break-up of the native nanotube bundles leading, upon further melt blending with HDPE, to high-performance polyolefinic nanocomposites.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016